A histological study of enamel developmental defects in a chacma baboon (Papio ursinus) incisor

Main Article Content

Jamal K. Salaymeh
Jimmy Erkens
Esme Beamish
W. Scott McGraw
Debbie Guatelli-Steinberg
Kate McGrath

Abstract

Physiological stress disrupts normal growth creating visible grooves on the enamel surface (i.e., linear enamel hypoplasia or LEH). Hypoplastic defects often, but not always, co-occur with internal accentuated lines (AL). Monkeys reportedly exhibit fewer enamel defects than hominoids as their presumably faster-growing teeth produce shallower LEH defects that are harder to macroscopically identify. In this case study of a chacma baboon (Papio ursinus) incisor, we assessed whether AL are matched by LEH defects; how enamel extension rates and striae angles relate to the surface distribution of LEH defects; and whether striae angles are shallow and rates of enamel extension fast compared to hominoid anterior teeth. We found a higher prevalence of internal AL (N = 48) compared to external LEH defects (N = 10), which co-occurred in all instances of LEH. However, 79.2% of AL defects do not co-occur with LEH defects. The spatial distribution of AL is more consistent, ranging from 3-10/decile, while LEH defects occur mainly in the midcrown and cervical regions. This incisor exhibits faster extension rates (mean = 23.6 µm/day) and shallower striae angles (11-16°) compared to hominoids, likely creating shallower LEH defects and contributing to the discrepancy between AL and LEH defects.

References

Ash, M., & Nelson, S. (2003). Wheeler’s Dental Anatomy, Physiology, and Occlusion (8th ed., p. 32). St. Louis, Missouri: Saunders.
Beamish, E., & O’Riain, M. (2014). The Effects of Permanent Injury on the Behavior and Diet of Commensal Chacma Baboons (Papio ursinus) in the Cape Peninsula, South Africa. International Journal of Primatology, 35(5), 1004-1020. doi: 10.1007/s10764-014-9779-z
Boyde, A. (1964). The Structure and Development of Mammalian Enamel. PhD Thesis, University of London, London, England.
Chowdhury, S., Brown, J., & Swedell, L. (2020). Anthropogenic effects on the physiology and behaviour of chacma baboons in the Cape Peninsula of South Africa. Conservation Physiology, Volume 8, Issue 1, 2020, coaa066. doi:10.1093/conphys/coaa066
Condon, K., & Rose, J. C. (1992). Intertooth and intratooth variability in the occurrence of developmental enamel defects. Journal of Paleopathology, 2, 61-77.
Daegling, D., & Grine, F. (1999). Terrestrial foraging and dental microwear in Papio ursinus. Primates, 40(4), 559-572. doi: 10.1007/bf02574831
Dirks, W., Lemmers, S., Ngoubangoye, B., Herbert, A., & Setchell, J. (2020). Odontochronologies in male and female mandrills (Mandrillus sphinx) and the development of dental sexual dimorphism. American Journal of Physical Anthropology, 172(4), 528-544. doi: 10.1002/ajpa.24094
Dirks, W., Reid, D. J., Jolly, C. J., Phillips-Conroy, J. E., & Brett, F. L. (2002). Out of the mouths of baboons: stress, life history, and dental development in the Awash National Park hybrid zone, Ethiopia. American Journal of Physical Anthropology, 118(3), 239–252. doi: 10.1002/ajpa.10089
Dumont, E. R. (1995). Mammalian enamel prism patterns and enamel deposition rates. Scanning Microscopy: Vol. 9: No. 2, Article 12. Retrieved from https://digitalcommons.usu.edu/microscopy/vol9/iss2/12
Galbany, J., Romero, A., Mayo-Alesón, M., Itsoma, F., Gamarra, B., Pérez-Pérez, A., Willaume, E., Kappeler, P. M., & Charpentier, M. J. (2014). Age-Related Tooth Wear Differs between Forest and Savanna Primates. PloS ONE, 9(4), e94938. doi: 10.1371/journal.pone.0094938
Goodman A.H., & Rose J.C. (1990). Assessment of systemic physiological perturbations from dental enamel hypoplasias and associated histological structures. Yearbook of Physical Anthropology, 33: 59-110. doi: 10.1002/ajpa.1330330506
Guatelli‐Steinberg, D. (2016). Chapter 27: Dental Stress Indicators from Micro‐ to Macroscopic. In J. D. Irish & G. R. Scott (Eds.), A Companion to Dental Anthropology (pp. 450–457). West Sussex, UK: Wiley Blackwell.
Guatelli-Steinberg, D., & Lukacs, J. R. (1998). Preferential expression of linear enamel hypoplasia on the sectorial premolars of rhesus monkeys (Macaca mulatta). American Journal of Physical Anthropology, 107(2), 179–186. doi: 10.1002/(sici)1096-8644(199810)107:2<179::aid-ajpa4>3.0.co;2-q
Guatelli-Steinberg, D., Ferrell, R., & Spence, J. (2012). Linear enamel hypoplasia as an indicator of physiological stress in great apes: reviewing the evidence in light of enamel growth variation. American Journal of Physical Anthropology, 148(2), 191-204. doi: 10.1002/ajpa.21619
Hillson, S., & Bond, S. (1997). Relationship of enamel hypoplasia to the pattern of tooth crown growth: A discussion. American Journal of Physical Anthropology, 104(1), 89-103. doi: 10.1002/(sici)1096-8644(199709)104:1<89::aid-ajpa6>3.0.co;2-8
Hoffman, T. S., & O’Riain, M. J. (2011). The spatial ecology of chacma baboons (Papio ursinus) in a human-modified environment. International Journal of Primatology, 32(2), 308-328. doi: 10.1007/s10764-010-9467-6
Hoffman, T. S., & O'Riain, M. J. (2012). Troop size and human-modified habitat affect the ranging patterns of a chacma baboon population in the cape peninsula, South Africa. American Journal of Primatology, 74(9), 853–863. doi: 10.1002/ajp.22040
Kansky, R., & Gaynor, D. (2000). Baboon management strategy for the Cape Peninsula (Final Report, Table Mountain Fund Project No. ZA 568). Table Mountain Fund, Cape Town, South Africa.
Kierdorf, H., Kierdorf, U., Richards, A., & Josephsen, K. (2004). Fluoride-induced alterations of enamel structure: an experimental study in the miniature pig. Anatomy And Embryology, 207(6), 463-474. doi: 10.1007/s00429-003-0368-8
Kierdorf, H., Kierdorf, U., Richards, A., & Sedlacek, F. (2000). Disturbed enamel formation in wild boars (Sus scrofa L.) from fluoride polluted areas in central Europe. The Anatomical Record, 259(1), 12-24. doi: 10.1002/(sici)1097-0185(20000501)259:1<12::aid-ar2>3.0.co;2-6
Lucas, P., Constantino, P., Wood, B., & Lawn, B. (2008). Dental enamel as a dietary indicator in mammals. BioEssays, 30(4), 374-385. doi: 10.1002/bies.20729
Mahoney, P., Miszkiewicz, J. J., Pitfield, R., Deter, C., & Guatelli-Steinberg, D. (2017). Enamel biorhythms of humans and great apes: the Havers-Halberg Oscillation hypothesis reconsidered. Journal of Anatomy, 230(2), 272–281. doi: 10.1111/joa.12551
McGrath, K., El-Zaatari, S., Guatelli-Steinberg, D., Stanton, M. A., Reid, D. J., Stoinski, T. S., Cranfield, M. R., Mudakikwa, A., & McFarlin, S. C. (2018). Quantifying linear enamel hypoplasia in Virunga Mountain gorillas and other great apes. American Journal of Physical Anthropology, 166(2), 337–352. doi: 10.1002/ajpa.23436
McGrath, K., Reid, D., Guatelli-Steinberg, D., Arbenz-Smith, K., El Zaatari, S., & Fatica, L. et al. (2019). Faster growth corresponds with shallower linear hypoplastic defects in great ape canines. Journal of Human Evolution, 137, 102691. doi: 10.1016/j.jhevol.2019.102691
Molnar, P. (2011). Extramasticatory dental wear reflecting habitual behavior and health in past populations. Clinical Oral Investigations, 15(5), 681–689. doi: 10.1007/s00784-010-0447-1
Nanci, A. (2018). Ten Cate’s Oral Histology: Development, Structure, and Function (9th ed., pp. 152-154). St. Louis, Missouri: Elsevier.
Preibisch, S., Saalfeld, S., & Tomancak, P. (2009). Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics, 25(11), 1463-1465. doi: 10.1093/bioinformatics/btp184
Reed, O. M. (1973). Papio cynocephalus age determination. American Journal of Physical Anthropology, 38(2), 309–314. doi: 10.1002/ajpa.1330380226
Risnes, S. (1990). Structural characteristics of staircase-type Retzius lines in human dental enamel analyzed by scanning electron microscopy. The Anatomical Record, 226(2), 135–146. doi: 10.1002/ar.1092260203
Shellis, R. P. (1984). Variations in growth of the enamel crown in human teeth and a possible relationship between growth and enamel structure. Archives of Oral Biology, 29(9), 697–705. doi: 10.1016/0003-9969(84)90175-4
Shellis, R. P. (1998). Utilization of periodic markings in enamel to obtain information on tooth growth. Journal of Human Evolution, 35(4-5), 387-400. doi: 10.1006/jhev.1998.0260
Skead, C. J. (1980). Historical mammal incidence in the Cape Province (Vol. 1). Cape Town, South Africa: Department of Nature and Environmental Conservation of the Provincial Administration of the Cape of Good Hope.
Stojanowski, C. M., Johnson, K. M., Paul, K. S., & Carver, C. L. (2016). Chapter 23: Indicators of Idiosyncratic Behavior in the Dentition. In J. D. Irish & G. R. Scott (Eds.), A Companion to Dental Anthropology (pp. 381–382). West Sussex, UK: Wiley Blackwell.
Strum, S. C. (2010). The Development of Primate Raiding: Implications for Management and Conservation. International Journal of Primatology, 31(1), 133–156. doi: 10.1007/s10764-009-9387-5
Ungar, P. (1994). Patterns of ingestive behavior and anterior tooth use differences in sympatric anthropoid primates. American Journal of Physical Anthropology, 95(2), 197-219. doi: 10.1002/ajpa.1330950207
Witzel, C., Kierdorf, U., Dobney, K., Ervynck, A., Vanpoucke, S., & Kierdorf, H. (2006). Reconstructing impairment of secretory ameloblast function in porcine teeth by analysis of morphological alterations in dental enamel. Journal of Anatomy, 209(1), 93–110. doi: 10.1111/j.1469-7580.2006.00581.x
Witzel, C., Kierdorf, U., Schultz, M., & Kierdorf, H. (2008). Insights from the inside: Histological analysis of abnormal enamel microstructure associated with hypoplastic enamel defects in human teeth. American Journal of Physical Anthropology, 136(4), 400-414. doi: 10.1002/ajpa.20822