A histological study of enamel developmental defects in a chacma baboon (Papio ursinus) incisor
Main Article Content
Abstract
Physiological stress disrupts normal growth creating visible grooves on the enamel surface (i.e., linear enamel hypoplasia or LEH). Hypoplastic defects often, but not always, co-occur with internal accentuated lines (AL). Monkeys reportedly exhibit fewer enamel defects than hominoids as their presumably faster-growing teeth produce shallower LEH defects that are harder to macroscopically identify. In this case study of a chacma baboon (Papio ursinus) incisor, we assessed whether AL are matched by LEH defects; how enamel extension rates and striae angles relate to the surface distribution of LEH defects; and whether striae angles are shallow and rates of enamel extension fast compared to hominoid anterior teeth. We found a higher prevalence of internal AL (N = 48) compared to external LEH defects (N = 10), which co-occurred in all instances of LEH. However, 79.2% of AL defects do not co-occur with LEH defects. The spatial distribution of AL is more consistent, ranging from 3-10/decile, while LEH defects occur mainly in the midcrown and cervical regions. This incisor exhibits faster extension rates (mean = 23.6 µm/day) and shallower striae angles (11-16°) compared to hominoids, likely creating shallower LEH defects and contributing to the discrepancy between AL and LEH defects.
References
Beamish, E., & O’Riain, M. (2014). The Effects of Permanent Injury on the Behavior and Diet of Commensal Chacma Baboons (Papio ursinus) in the Cape Peninsula, South Africa. International Journal of Primatology, 35(5), 1004-1020. doi: 10.1007/s10764-014-9779-z
Boyde, A. (1964). The Structure and Development of Mammalian Enamel. PhD Thesis, University of London, London, England.
Chowdhury, S., Brown, J., & Swedell, L. (2020). Anthropogenic effects on the physiology and behaviour of chacma baboons in the Cape Peninsula of South Africa. Conservation Physiology, Volume 8, Issue 1, 2020, coaa066. doi:10.1093/conphys/coaa066
Condon, K., & Rose, J. C. (1992). Intertooth and intratooth variability in the occurrence of developmental enamel defects. Journal of Paleopathology, 2, 61-77.
Daegling, D., & Grine, F. (1999). Terrestrial foraging and dental microwear in Papio ursinus. Primates, 40(4), 559-572. doi: 10.1007/bf02574831
Dirks, W., Lemmers, S., Ngoubangoye, B., Herbert, A., & Setchell, J. (2020). Odontochronologies in male and female mandrills (Mandrillus sphinx) and the development of dental sexual dimorphism. American Journal of Physical Anthropology, 172(4), 528-544. doi: 10.1002/ajpa.24094
Dirks, W., Reid, D. J., Jolly, C. J., Phillips-Conroy, J. E., & Brett, F. L. (2002). Out of the mouths of baboons: stress, life history, and dental development in the Awash National Park hybrid zone, Ethiopia. American Journal of Physical Anthropology, 118(3), 239–252. doi: 10.1002/ajpa.10089
Dumont, E. R. (1995). Mammalian enamel prism patterns and enamel deposition rates. Scanning Microscopy: Vol. 9: No. 2, Article 12. Retrieved from https://digitalcommons.usu.edu/microscopy/vol9/iss2/12
Galbany, J., Romero, A., Mayo-Alesón, M., Itsoma, F., Gamarra, B., Pérez-Pérez, A., Willaume, E., Kappeler, P. M., & Charpentier, M. J. (2014). Age-Related Tooth Wear Differs between Forest and Savanna Primates. PloS ONE, 9(4), e94938. doi: 10.1371/journal.pone.0094938
Goodman A.H., & Rose J.C. (1990). Assessment of systemic physiological perturbations from dental enamel hypoplasias and associated histological structures. Yearbook of Physical Anthropology, 33: 59-110. doi: 10.1002/ajpa.1330330506
Guatelli‐Steinberg, D. (2016). Chapter 27: Dental Stress Indicators from Micro‐ to Macroscopic. In J. D. Irish & G. R. Scott (Eds.), A Companion to Dental Anthropology (pp. 450–457). West Sussex, UK: Wiley Blackwell.
Guatelli-Steinberg, D., & Lukacs, J. R. (1998). Preferential expression of linear enamel hypoplasia on the sectorial premolars of rhesus monkeys (Macaca mulatta). American Journal of Physical Anthropology, 107(2), 179–186. doi: 10.1002/(sici)1096-8644(199810)107:2<179::aid-ajpa4>3.0.co;2-q
Guatelli-Steinberg, D., Ferrell, R., & Spence, J. (2012). Linear enamel hypoplasia as an indicator of physiological stress in great apes: reviewing the evidence in light of enamel growth variation. American Journal of Physical Anthropology, 148(2), 191-204. doi: 10.1002/ajpa.21619
Hillson, S., & Bond, S. (1997). Relationship of enamel hypoplasia to the pattern of tooth crown growth: A discussion. American Journal of Physical Anthropology, 104(1), 89-103. doi: 10.1002/(sici)1096-8644(199709)104:1<89::aid-ajpa6>3.0.co;2-8
Hoffman, T. S., & O’Riain, M. J. (2011). The spatial ecology of chacma baboons (Papio ursinus) in a human-modified environment. International Journal of Primatology, 32(2), 308-328. doi: 10.1007/s10764-010-9467-6
Hoffman, T. S., & O'Riain, M. J. (2012). Troop size and human-modified habitat affect the ranging patterns of a chacma baboon population in the cape peninsula, South Africa. American Journal of Primatology, 74(9), 853–863. doi: 10.1002/ajp.22040
Kansky, R., & Gaynor, D. (2000). Baboon management strategy for the Cape Peninsula (Final Report, Table Mountain Fund Project No. ZA 568). Table Mountain Fund, Cape Town, South Africa.
Kierdorf, H., Kierdorf, U., Richards, A., & Josephsen, K. (2004). Fluoride-induced alterations of enamel structure: an experimental study in the miniature pig. Anatomy And Embryology, 207(6), 463-474. doi: 10.1007/s00429-003-0368-8
Kierdorf, H., Kierdorf, U., Richards, A., & Sedlacek, F. (2000). Disturbed enamel formation in wild boars (Sus scrofa L.) from fluoride polluted areas in central Europe. The Anatomical Record, 259(1), 12-24. doi: 10.1002/(sici)1097-0185(20000501)259:1<12::aid-ar2>3.0.co;2-6
Lucas, P., Constantino, P., Wood, B., & Lawn, B. (2008). Dental enamel as a dietary indicator in mammals. BioEssays, 30(4), 374-385. doi: 10.1002/bies.20729
Mahoney, P., Miszkiewicz, J. J., Pitfield, R., Deter, C., & Guatelli-Steinberg, D. (2017). Enamel biorhythms of humans and great apes: the Havers-Halberg Oscillation hypothesis reconsidered. Journal of Anatomy, 230(2), 272–281. doi: 10.1111/joa.12551
McGrath, K., El-Zaatari, S., Guatelli-Steinberg, D., Stanton, M. A., Reid, D. J., Stoinski, T. S., Cranfield, M. R., Mudakikwa, A., & McFarlin, S. C. (2018). Quantifying linear enamel hypoplasia in Virunga Mountain gorillas and other great apes. American Journal of Physical Anthropology, 166(2), 337–352. doi: 10.1002/ajpa.23436
McGrath, K., Reid, D., Guatelli-Steinberg, D., Arbenz-Smith, K., El Zaatari, S., & Fatica, L. et al. (2019). Faster growth corresponds with shallower linear hypoplastic defects in great ape canines. Journal of Human Evolution, 137, 102691. doi: 10.1016/j.jhevol.2019.102691
Molnar, P. (2011). Extramasticatory dental wear reflecting habitual behavior and health in past populations. Clinical Oral Investigations, 15(5), 681–689. doi: 10.1007/s00784-010-0447-1
Nanci, A. (2018). Ten Cate’s Oral Histology: Development, Structure, and Function (9th ed., pp. 152-154). St. Louis, Missouri: Elsevier.
Preibisch, S., Saalfeld, S., & Tomancak, P. (2009). Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics, 25(11), 1463-1465. doi: 10.1093/bioinformatics/btp184
Reed, O. M. (1973). Papio cynocephalus age determination. American Journal of Physical Anthropology, 38(2), 309–314. doi: 10.1002/ajpa.1330380226
Risnes, S. (1990). Structural characteristics of staircase-type Retzius lines in human dental enamel analyzed by scanning electron microscopy. The Anatomical Record, 226(2), 135–146. doi: 10.1002/ar.1092260203
Shellis, R. P. (1984). Variations in growth of the enamel crown in human teeth and a possible relationship between growth and enamel structure. Archives of Oral Biology, 29(9), 697–705. doi: 10.1016/0003-9969(84)90175-4
Shellis, R. P. (1998). Utilization of periodic markings in enamel to obtain information on tooth growth. Journal of Human Evolution, 35(4-5), 387-400. doi: 10.1006/jhev.1998.0260
Skead, C. J. (1980). Historical mammal incidence in the Cape Province (Vol. 1). Cape Town, South Africa: Department of Nature and Environmental Conservation of the Provincial Administration of the Cape of Good Hope.
Stojanowski, C. M., Johnson, K. M., Paul, K. S., & Carver, C. L. (2016). Chapter 23: Indicators of Idiosyncratic Behavior in the Dentition. In J. D. Irish & G. R. Scott (Eds.), A Companion to Dental Anthropology (pp. 381–382). West Sussex, UK: Wiley Blackwell.
Strum, S. C. (2010). The Development of Primate Raiding: Implications for Management and Conservation. International Journal of Primatology, 31(1), 133–156. doi: 10.1007/s10764-009-9387-5
Ungar, P. (1994). Patterns of ingestive behavior and anterior tooth use differences in sympatric anthropoid primates. American Journal of Physical Anthropology, 95(2), 197-219. doi: 10.1002/ajpa.1330950207
Witzel, C., Kierdorf, U., Dobney, K., Ervynck, A., Vanpoucke, S., & Kierdorf, H. (2006). Reconstructing impairment of secretory ameloblast function in porcine teeth by analysis of morphological alterations in dental enamel. Journal of Anatomy, 209(1), 93–110. doi: 10.1111/j.1469-7580.2006.00581.x
Witzel, C., Kierdorf, U., Schultz, M., & Kierdorf, H. (2008). Insights from the inside: Histological analysis of abnormal enamel microstructure associated with hypoplastic enamel defects in human teeth. American Journal of Physical Anthropology, 136(4), 400-414. doi: 10.1002/ajpa.20822